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Analyzing Lyapunov spectra of chaotic dynamical systems
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It is shown that the asymptotic spectra of finite-time Lyapunov exponents of a variety of fully chaotic
dynamical systems can be understood in terms of a statistical analysis. Using random matrix theory, we derive
numerical and in particular, analytical results that provide insights into the overall behavior of the Lyapunov
exponents particularly for strange attractors. The corresponding distributions for the unstable periodic orbits
are investigated for comparison.
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Finite-time Lyapunov exponents represent an import
tool for the quantitative description of the geometrical a
dynamical properties of chaotic dynamical systems@1# and
apply therefore to a variety of different physical situation
Numerous recent works~see, for example, Refs.@2–6#! try to
describe the spectrum of these exponents in terms of p
ucts of random matrices. The majority of these investigati
focus on the maximum average Lyapunov exponent that
be estimated by taking the proper mean of an ensembl
chaotic trajectories for a sufficiently large time intervalp.
Details of the corresponding distribution of Lyapunov exp
nents ~LE! are thereby not important. In order to analy
strange attractors in more detail, it is, however, crucial
know the spectrum of the finite-time LE that provides va
able information on the structures and properties emergin
phase space@1,7#. For the asymptotic~large p) Lyapunov
spectra it is known@8# that, apart from a few exceptions@9#,
a Gaussian approximation fits the behavior around the m
mum very well. Very little is known however, with respe
to the overall behavior of the distribution. This is in contra
to the fact that the non-Gaussian tails of the distribution h
significant influence on physical processes@10#.

In the present Brief Report, we analyze finite-tim
Lyapunov spectra for low-dimensional discrete dynami
systems with fully developed chaos for the case of large t
intervalsp@1, i.e., their asymptotic form. Our main intere
is twofold. First, we explorecommonfeatures of these spec
tra beyond their behavior in the vicinity of their maxima a
compare them to the corresponding spectra of the unst
periodic orbits~UPOs!. It turns out that these features can
understood in terms of products of random matrices. Sec
we investigate the origin of spectral properties that dep
on the dynamical system. System-dependent characteri
can, e.g., be due to invariant structures in phase space,
as UPOs.

It is an open question how the randomlike features of
chaotic dynamics determine the distribution of the finite-tim
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LE. One way to investigate this is to replace certain dyna
cal quantities of the original system by random ones and
study the resulting changes and/or common properties in
spectra of LE. In several recent works@11,12#, such random-
like modifications have been suggested. Adopting this me
odology here, we will use four different ensembles of traje
tories leading to different distributions for the correspondi
LE. Each ensembleEi consists ofN trajectories~typically
N'106) of a given lengthp(p@1) and is given by~i! the
distribution of the starting points of the finite trajectories a
by ~ii ! the rule applied to generate the trajectory itself. W
will then be primarily interested in the distributions of th
finite-time maximum LEl5(1/p)ln L belonging to these
ensembles$Ei%. L is the largest of the absolute values of t
eigenvalues belonging to the transfer matrixMi

(p)

5)k51
p Mi(xW k) with $xW kuk51, . . . ,p% being a finite-time tra-

jectory of the ensembleEi . Mi(xW k) is the stability matrix
belonging to the~chaotic! dynamical lawxWn115FW (xWn). The
index i of Mi indicates the ensembleEi according to which
the points$xW k% of the trajectories are determined. It is impo
tant to note that all ensembles$Ei% ~see below! use the spe-
cific functional form of the stability matrix belonging toFW
but involve trajectories with different degrees of rando
ness. In the following, we specify the ensembles$Ei%.

E1 consists of trajectories of lengthp obtained via itera-
tion of the chaotic dynamical lawFW . The corresponding ini-
tial conditions are distributed according to the invariant de
sity of the map. This gives the so-called finite-tim
Lyapunov exponent distribution~FTLED! ~see Ref.@1# and
references therein!. The ensembleE2 consists of trajectories
that are generated by a random variable distributed accor
to the invariant density of the chaotic mapFW . This yields the
bootstrap Lyapunov exponent distribution~BLED! @11,12#.
Compared to the FTLED, the BLED corresponds to a d
namics with enhanced random character. The succes
points of the bootstrap trajectory are completely uncor
lated. The third ensembleE3 uses a uniformly distributed
random variable for the generation of the trajectories. T
range of the uniform distribution is chosen according to
phase space of the dynamical system. This case corresp
4413 ©2000 The American Physical Society
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4414 PRE 62BRIEF REPORTS
to a random matrix simulation of the dynamical system ho
ever, respecting the form of the stability matrixM that be-
longs to the mapFW . The resulting distribution of the
Lyapunov exponents is called the random-matrix Lyapun
exponent distribution~RMLED!. Within the present investi-
gation, the ensembleE3 possesses the highest degree of r
domness. The fourth ensembleE4 consists of the UPOs o
the dynamical systemFW with period p and correspondingly
the distribution of their maximal LE. For fixedp, the number
of trajectories contained inE4 is finite according to the to-
pological entropy of the corresponding phase space.

Let us now explore the distributions defined above fo
variety of low-dimensional fully chaotic systems. Our ma
goal is to analyze and understand the overall behavior of
FTLED for these systems. We begin with a simple on
dimensional~1D! example: the logistic map. Results on th
FTLED for this system can be found in Ref.@9#. We note
that the FTLED has a non-Gaussian form with one domin
ing central cusp. In comparison to this, our numerical cal
lations on both the BLED and RMLED show that they a
smooth functions with a Gaussian-like maximum but w
characteristic asymmetric tails. For the maximum Lyapun
exponent distribution of the UPOs, the exact result is ad
function, i.e.,rp(l)5d(l2 ln 2) independent of the perio
p. Looking at the FTLED, one observes that the tails of
distribution are rather similar to the tails of the BLED an
the RMLED while the cusp~maximum! is located exactly at
l5 ln 2. The BLED~or RMLED! reflects therefore the over
all behavior of the FTLED, i.e., describes the envelope of
FTLED. The latter possesses an additional central peak a
position of the Lyapunov exponents of the UPOs. These
tures will in the following turn out to be common for a broa
class of dynamical systems.

We focus in the following on two-dimensional system
with a strange attractor. The Henon map@13# for a51.4 and
b50.3 and the Ikeda map@14# for a50.9 andb56 are
prototypes of such systems. The FTLED of both are p
sented in Fig. 1. The ensembleE1 consists of 106 trajectories
of length p527 for both the Henon and Ikeda map. Th
results are surprisingly similar to the 1D case: A charac
istic envelope with asymmetric tails dominates the distrib
tion while superimposed peaks indicate the presence of
ditional structures in phase space. As we shall see in
following, three regions with different functional forms o

FIG. 1. The FTLED~see text! of the Henon and Ikeda map fo
p527.
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the envelope can be distinguished in the FTLED as well
the RMLED and BLED: a fast asymptotic algebraic dec
for large values ofl, a Gaussian-like behavior around th
maximum, and a dominating exponential decay for su
ciently smalll. Figure 2 shows the BLED and RMLED fo
these maps for the same lengthp. The position of the maxi-
mum of the RMLED is sensitive with respect to the rando
number intervals chosen, i.e., its location carries the inf
mation of the position of the attractor in phase space. Ba
on the above results and observations, we are naturally le
the following conclusion: the basic possible features of
smooth envelope of the FTLED~asymmetric structure
asymptotic tail properties! of a chaotic dynamical system ar
of random origin and can be obtained and understood b
corresponding study of random matrices~see below!. Addi-
tional superimposed structures are signatures of, e.g., inv
ant sets in phase space and are therefore of exclusively
terministic dynamical origin.

To elucidate and quantify the above observations, we p
form in the following an analytical investigation of the RM
LED. This will allow us to thoroughly understand the beha
ior of the RMLED and consequently the correspondi
aspects of the FTLED. We begin by introducing a fictitio
dynamical system with a stability matrixM i of strongly ran-
dom character, i.e.,

M i5r iA5S ari bri

cr i dr i
D ,

wherer i is a random variable uniformly distributed in@0,R#
and i labels the fictitious trajectory of lengthp. The simple
form of the matrixM i allows us to factorize the random
variables $r i u i 51, . . . ,p% of the stability matrix M (p)

5)k51
p M k and to reduce the problem of the product of ra

dom matrices to that of a product of random numbers. T
matrix structure is then retained in the constant matrixA that
is assumed to be nonsingular.

The distribution of the maximum LE for trajectories o
lengthp of this system is determined as

rp~l!5E
0

R

dr1E
0

R

dr2•••E
0

R

drp

3dS l2
1

p
ln)

i 51

p

r iULmaxU D)
l 51

p

r̃~r l !, ~1!

FIG. 2. The BLED and RMLED~see text! of the Henon~H! and
Ikeda ~I! map forp527.
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where r̃(z)5Q(z)Q(R2z)(1/R), Q being the step func-
tion, andLmax is given by

Lmax5
1
2 @Tr A1sgn~Tr A!A~Tr A!224 detA#.

Using the substitutiont i5 ln(riuLmaxu) and performing the
Fourier transform of thed function involved in Eq.~1!, we
obtain

rp~l!5
p

2p~RuLmaxu!pE2`

`

dk e2 ikpl

3E
2`

ln(RuLmaxu)
dt1•••E

2`

ln(RuLmaxu)
dtp

3expS ~11 ik !(
i 51

p

t i D . ~2!

The integrations overt i in Eq. ~2! can be easily performed
leading to apth-order pole in the complexk plane atk5 i .
This pole structure, corresponding to values ofk for which
the exponent of the second exponential term in Eq.~2! van-
ishes and for which the integration oft i leads to singularities
is responsible for the features of the LED described abo
Complex integration finally yields

rp~l!5
pp

~p21!!
@ ln~RuLmaxu!2l#p21

3e2p[ ln(RuLmaxu)2l]Q@ ln~RuLmaxu!2l#. ~3!

Equation ~3! demonstrates that the exponential behav
dominates for sufficiently small values ofl. Around the
maximum atl05 ln(RuLmaxu)2(121/p), the saddle point ap
proximation (p@1) gives us a Gaussian. For values ofl
close to the maximum valuelmax5 ln(RuLmaxu), we arrive at
a power-law behavior, i.e., an algebraic decay.

Although the fictitious dynamical model discussed abo
captures the main features of the statistical properties of
distributions of Lyapunov exponents, it is clearly desirable
investigate chaotic dynamical systems for which the R
LED can be obtained analytically. To this end, let us co
sider the dynamical system defined by the quadratic eq
tionsxn115ayn

21b; yn5cxn1d. This system possesses, f
a5c5d51 andb522.5, a strange attractor that contai
repeating crosses of decreasing size. For that reason we
it the cross map in the following. The average maximu
Lyapunov exponent of this attractor isl̄'0.123 while its
fractal dimension isdF'1.78. The RMLED for the cross
map can be calculated analytically following the line d
scribed above for our fictitious model. One peculiarity of t
cross map is that one has to distinguish between the RML
obtained through trajectories with even and odd lengthp.
The reason is that for oddp, both eigenvalues of the stabilit
matrix M (p) have the same absolute value, while for evenp
there are two eigenvalues different with respect to their
solute value, and one has to select the maximal one. Aft
tedious calculation using complex contour integration te
niques, we find for the RMLED of the cross map for od
values ofp the result
e.
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rp~l!5
2p

p! F pR2

R22R1
G p

exp@2p~D22l!#

3(
j 50

p S p

j D S D2
j

p
lnUR2

R1
U22l D p21

3QS D2
j

p
lnUR2

R1
U22l D . ~4!

Here we have taken the random variables appearing in
stability matrix of the cross map to be uniformly distribute
in the interval @R1 ,R2#. The parameterD is given asD
5 lnu2acR2u. From Eq. ~4! we see that the RMLED of the
cross map is essentially a product of a single exponential
a sum of power laws. The latter possess all the same po
p21 and differs only with respect to the constants involve
The similarity to the RMLED result of our model system
Eq. ~3! is obvious, which confirms the universality of certa
features of the RMLED. The RMLED for the case of evenp
is given by the integral

rp~l!52rp/2~l!E
2`

l

dzrp/2~z! ~5!

with rp/2(x) according to Eq.~4!. The integration in Eq.~5!
can be performed analytically, leading to a lengthy expr

FIG. 3. The FTLED, BLED, and the distribution of th
Lyapunov exponents of the unstable periodic orbits for the cr
map forp528.

FIG. 4. The distribution of the Lyapunov exponents of the u
stable periodic orbits of the Henon (p527) and Ikeda map (p
514).
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sion that will not be given here. The main characteristics
the functionrp(l) are again the features stated previously
dominating exponential behavior for sufficiently small va
ues ofl, a Gaussian maximum, and a fast algebraic de
for l close to its maximum value. We have also studied
FTLED, BLED, and the distribution of the Lyapunov exp
nents of the UPOs for the cross map forp528. The results
are shown in Fig. 3. The envelope of these distributions
hibits the same features as discussed above. The addit
structures present in the FTLED of the cross map are, as
be seen from Fig. 3, due to the presence of the UPOs
provide signatures of deterministic dynamical origin.

Finally, let us consider the distributions of the Lyapun
exponents of the UPOs of the Henon (p527) and the Ikeda
(p514) map@15,16# that are presented in Fig. 4. The sig
of the characteristic properties of the envelopes discus
above are also visible here. An interesting feature appear
the distribution of the LE of the UPOs of the Ikeda map: it
shifted significantly compared to the FTLED. This shift
,
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probably due to the fact that the UPOs fail to reproduce
invariant density of the attractor, at least up to the abo
considered period. It is well known that the Ikeda attrac
needs a description going beyond the linear neighborh
@17#.

Summarizing our results, we have demonstrated that
overall behavior of the finite-time Lyapunov exponent dist
butions of fully chaotic dynamical systems show gene
characteristics, i.e., they can be understood in terms of
tistical random matrix simulations of the systems. Seemin
this holds also for the distributions of the Lyapunov exp
nents of the unstable periodic orbits embedded into the c
otic phase space. Since Lyapunov spectra are at the hea
our understanding of chaotic systems in general, our res
apply to a variety of different physical systems.
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